Design and *in silico* evaluation of oxadiazole linked chromone derivatives as anti-depressant agents

Gupta Dheeraj Rajesh, Murugeshwari Vidya, Kumar Pankaj* and Kumar Abhishek

Department of Pharmaceutical Chemistry, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, INDIA *pankajpgr@nitte.edu.in

Abstract

Depression is a common CNS disorder due to disturbances in the serotonin and dopamine level within the brain. In this study, different derivatives (C1-C32) of oxadiazole-linked chromone were designed and in silico studies were performed to investigate its anti-depressant activities. Compounds were docked with 5HT1 receptors to do so and MMGBSA and ADMET properties were evaluated. Further. compounds pharmacophore modeling and antidepressant activity were calculated using the phase and PASS tools. Among 32 designed compounds, C15, C29 and C31 showed the highest docking scores of -7.617, -7.269 and -7.325 kcal/mol and exhibited significant interaction with 5HT1 receptors compared to the standard drug imipramine. Compound C15 showed the highest binding efficiency with a binding energy of -77.79; the expected common is having a binding energy of -47.20. ADME properties show that all the designed compounds followed the rule of five.

Further ligand-receptor complex potential interactions were evaluated using pharmacophore modeling, indicating that the compound has steric and electronic features to ensure the interaction with the selected receptor. Further, the antidepressant activity was predicted. Compounds C15 and C21 have the highest possibility of being antidepressant molecules with 0.827 and 0.833 pa values.

Keywords: Chromone, Depression, Docking Studies Oxadiazole, Pharmacophore.

Introduction

Nowadays, depression has become a severe mental problem with a high incidence of suicide and much social withdrawal. It is characterized by sadness, disturbed sleep, appetite, loss of interest, feelings of tiredness, guilt or low self-worth and poor concentration.¹ As per the World Health Organization (WHO), depression has affected 264 million people worldwide. It is also a prevalent mental condition involving complex social and psychological behaviour interactions and substantially burdens the society.¹⁰

This disorder is treated with antidepressant drugs by elevating mood and modifying behaviour. There are various classes of drugs used for the treatment of depression such as selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCA), selective serotonin and norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs) and atypical antidepressants¹⁵.

However, despite so many classes of antidepressants available, the effect in the long term is still questionable. All these drugs have reported side effects in the long-term treatment such as changes in sleep patterns, weight increases, gastrointestinalhaemorrhagee and loss of libido⁸. Hence, finding a new molecule to treat depression is urgently needed.

Chromone is an isomer of coumarin and is also known as 1benzopyran-4-one. It is a member of the benzopyran class and has a keto group replaced on the fourth position of the Pyran ring. Its derivatives have demonstrated various biological actions including antioxidant³, antibacterial, anticancer, psychotropic, insecticidal, fungicidal⁹ and antiviral properties⁷. A heterocyclic molecule with a fivemembered ring of two nitrogen atoms and one oxygen atom is known as 1,3,4 oxadiazole. This has also demonstrated various biological effects such as anti-inflammatory², antimicrobial¹¹, antiviral and depressive properties¹².

The serotonin 5-HT1A receptor (5-HT1AR) is a G-protein coupled receptor extensively expressed in the central nervous system (CNS)¹⁴. It is responsible for modulating mood, emotion and depression, as well as various behavioral responses such as thermoregulation, sleep, feeding, aggression and anxiety. Of all the serotonin receptor subtypes, 5-HT1AR is the primary receptor that causes depression and it plays a massive role in many antidepressants' works.

Keeping this in view, the two pharmacophores chromone and oxadiazole, were merged to form a single pharmacophore and different derivatives were further designed based on various substitutions on the main pharmacophore. Further, these designed ligands were evaluated for antidepressant activity using *in silico* studies targeting the serotonin 5-HT1A receptor (5-HT1AR).

Material and Methods

Designed compounds data: Designed compounds (C1-C32) shown in figure 1 were evaluated for anti-depressant activities using *in silico* studies.

In silco study: All the computational studies were carried out on Maestro 12.3 version 25 from Schrodinger programmed on DELL 27" computer terminal which works on Intel Core i7-7700 CPU at 3.60 GHz x8 clock speed with

the random-access memory 8 GB and 1 TB hard drive on Linux 64-bit operating system.

 $R_1 = H, CH_3$ $R_2 = 2,3-NO_2, 4-NO_2, 6-F, 4-Br, 4-OH, 2-OH, 4-OCH_3, 3-Cl, 4-Cl, 2-OCH_3, 3-OCH_3, 2,4-Cl, 4-NO_2, 2,5-OCH_3, 3,4,5-OCH_3$ Figure 1: Designed Oxadiazole-linked chromone derivatives (C1-C32)

Molecular docking and MM-GBSA binding free energy: Molecular docking is significant in structural molecular biology and computer-aided drug design. Designed ligandprotein docking uses a three-dimensional enzyme to anticipate the predominant ligand binding mode(s). A structure-based drug design process called molecular docking identifies the crucial interactions between the targeted protein and produced ligands with low energy conformation. The scoring function used to predict the binding affinity with the receptor characterizes the minimum interaction of the ligands. All these designed ligands docked with 5 HT1A (PDB-ID: 7E2X) receptors and their binding affinity were assessed in terms of binding free energies (Docking score, Kcal/mol) creations on the active site of the protein and the optimal interaction of ligand molecules. Lastly, these ligands were docked using Glide enhanced precision scoring methods (XP).6,13 Further binding efficiency receptor-ligand complexes were calculated regarding molecular mechanics-generalized born surface area (MM-GBSA).

ADMET properties and pharmacophore modelling: With the QikProp module of the Schrödinger suite 2022-4, an ADME calculation was performed for the top ten docked designed ligand and its physicochemical properties were determined such as hydrogen bond donors and acceptor and log P value; the molecules are anticipated to adhere to Lipinski's rule of five deprived of breaking. This study predicts the druggable nature of designed compounds. Further, the top ten docked designed compounds' pharmacophore modeling was performed using e pharmacophore generation to understand the receptor's and ligand's interaction using phase pharmacophore models (Schrodinger 2020-4: Phase). This modeling shows that the minimum feature of ligand must possess functional interaction with the receptor.^{4,5}

Prediction of biological activity using PASS: The top ten docked were evaluated for antidepressant activity using the online tool predicting activity spectra for substances (PASS). The PASS provides Pa (pharmacologically active) and Pi (pharmacologically inactive) values by uploading the canonical smiles of compounds. Pa (pharmacologically active) value is the possibility of compounds belonging to a particular class of compounds. The greater is the Pa value, the greater is the chance to belong to that compound class.¹⁶

Results and Discussion

Molecular docking: The prepared library of compounds (C1-C32) was docked into the active pockets of the Apo serotonin 1A (5-HT1A) receptor (PDB ID: 7E2X) and its docking score was calculated as Kcal/mol. The compound's docking score ranged from -7.617 to -4.436 kcal/mol whereas the standard drug imipramine was -5.653 Kcal/mol. Among all these, compounds C15, C31 and C29 have shown the best docking score and their binding interaction of protein (7E2X) along with imipramine respectively presented in figures 2, 3, 4 and 5.

Compounds interacted with various amino acid receptors through bonds such as π - π stacking, hydrogen bonding and hydrophobic, positive and negative interaction. Apart from compound C24, all the compounds showed polar interaction with SER199. The docking score of the designed compound (C1-C32) is shown in table 1.

Docking scores of designed compounds (C1-C52) bounded to 7E22X receptor											
Comp	\mathbf{R}_1	R ₂	Docking	Comp	\mathbf{R}_1	\mathbf{R}_2	Docking	Comp	\mathbf{R}_1	\mathbf{R}_2	Docking
code			score	code			score	code			score
C1	Н	3NO ₂	-7.161	C11	Н	2OH	-7.084	C21	Н	3OCH ₃	-6.854
C2	CH ₃	3NO ₂	-4.436	C12	CH ₃	2OH	-6.819	C22	CH ₃	3OCH ₃	-6.567
C3	Н	4 NO ₂	-6.544	C13	Н	4-OCH ₃	-6.983	C23	Н	2,4 Cl	-6.787
C4	CH ₃	4 NO ₂	-5.106	C14	CH ₃	4-OCH ₃	-6.224	C24	CH ₃	2,4 Cl	-5.077
C5	Н	4F	-6.970	C15	Н	3C1	-7.617	C25	Н	4 NO ₂	-5.122
C6	CH ₃	4F	-6.190	C16	CH ₃	3C1	-6.001	C26	CH ₃	4 NO ₂	-6.175
C7	Н	4Br	-6.188	C17	Н	4Cl	-6.445	C27	Н	2, 5 OCH ₃	-6.440
C8	CH ₃	4Br	-5.194	C18	CH ₃	4Cl	-6.209	C28	CH ₃	2, 5 OCH ₃	-5.272
C9	Н	4-OH	-6.242	C19	Н	2OCH ₃	-5.780	C29	Н	3, 4, 5 OCH ₃	-7.269
C10	CH ₃	4-OH	-6.226	C20	CH ₃	2OCH ₃	-6.099	C30	CH ₃	3, 4, 5 OCH ₃	-6.309
C31	Н	2 Cl	-7.325	C32	CH ₃	2 Cl	-6.287	Imipramine			-5.653

 Table 1

 Docking scores of designed compounds (C1-C32) bounded to 7E2X receptor

The glide score of the top ten compounds docked to Apo serotonin 1A (5-HT1A) receptor								
Comp	Glide EVDW	Glide Coulombic	Glide energy					
code								
C1	-33.832	-0.651	-34.483					
C5	-34.691	-0.691	-35.381					
C11	-36.892	-0.802	-37.694					
C12	-36.236	-3.200	-39.436					
C13	-36.186	-0.785	-36.971					
C15	-38.926	-0.385	-39.311					
C21	-36.715	-0.301	-37.016					
C23	-37.812	0.786	-37.026					
C29	-39.821	0.406	-39.416					
C31	-37.061	-0.659	-37.720					
Imipramine	-28.846	-1.641	-38.310					

Figure 2: 3D and 2D interaction of C15 with 7E2X

Figure 3: 3D and 2D interaction of C31 with 7E2X

Figure 4: 3D and 2D interaction of C29 with 7E2X

Figure 5: 3D and 2D interaction of Imipramine with 7E2X

	List of amino acids of top ten docked mole	cules that inter	acted with 7	E2X receptor	•
Comp	Hydrophobic	Polar	H-	Positively	Negatively
Code	interaction	interaction	bonding	charged	Charged
C1	ILE189, ILE124, ILE176, ALA203,	SER199,	SER199	LYS101	
	CYS120, VAL117, PHE361, VAL364,	THR200,			
	ALA365, ILE385, LEU368, LEU381,	THR121,			
	MET377	ASN386			
C5	MET377, ILE189, ILE124, ILE167,	SER199,	SER199	LYS191	ASP116
	CYS120, ALA203, VAL117, PHE361,	THR200,			
	PHE362, VAL364, ALA365, ILE385,	THR121,			
	LEU368	ASN386			
C11	ILE189, ILE124, ILE167, CYS120,	SER199,	SER199	LYS191	ASP116
	ALA203, VAL117, PHE361, PHE362,	THR200,			
	VAL364, ALA365, ILE385, LEU368,	THR121,			
	MET377	ASN386			
C12	ILE189, ILE167, ALA203, CYS120,	SER199,	SER199	LYS191	ASP116
	VAL117, PHE361, PHE362, VAL364,	THR200,			
	ALA365, ILE385, LEU368, MET377	THR121,			
		ASN386			
C13	ILE124, ILE167, ALA203, CYS120,	SER199.	SER199	LYS191	
	VAL117, PHE361, PHE362, VAL364,	THR200,			
	ALA365, LEU368, MET377, PRO378,	THR121.			
	ILE385	ASN386.			
		THR379			
C15	ILE189. ILE124. ILE167. CYS120.	THR196.	SER199	LYS191	
010	ALA203. VAL117. CYS120. PHE361.	SER 199.	SERTIT	210171	
	PHE362 VAL364 ALA365 ILE385	THR200			
	LEU368	THR121.			
		ASN386			
C21	ILE189 ILE124 ILE167 ALA203	THR196	SER199	LYS191	
021	CYS120 VAL117 PHE361 PHE362	SER 199	SERTIT	2101/1	
	VAL364. ALA365. ILE385. LEU368.	THR200.			
	LEU381 MET377	THR121			
		ASN386			
C23	ILE189 ILE124 ILE167 ALA203	THR200	SER199	LYS191	
023	CYS120 VAL117 PHE361 PHE362	SER 199	SERTIT	2101/1	
	VAI 364 ALA365 LEU368 MET377	THR121			
	1111301, 1111303, 1110300, 1111377	ASN386			
		THR 196			
C29	II F124 II F167 AI A203 CYS120	THR196	SFR199	L YS191	
(2)	VAI 117 PHF361 PHF362 VAI 362	SFR 199	SER(1))	LIGIT	
	ALA365 LEU368 ILE385 LEU381	THR200			
	MET377	THR121			
		ASN386			
		THR 379			
C31	LEU368 ALA365 ILE189 PHE362	SFR199	ASN386	L YS191	ASP116
0.51	$\begin{array}{c} \text{PHE360}, & \text{HE1600}, & \text{HE1600}, & \text{HE1600}, \\ \text{PHE361} & \text{II} \text{ F167} & \text{AI} \text{ A203} & \text{TRP358} \end{array}$	THR 200	1511500	LIGIT	101110
	ILE124 CYS120 TYR390 VAL117	THR121			
	MET377	ASN386			
Iminramine	CVS187 II F189 DRO360 I FU368	SER 100		I VS101	
	$\Delta I \Delta 365 V \Delta I 364 TVR 105 DHE 367$	$\frac{31170}{\text{THR}}$		L13171	
	PHE361 PHE112 II E112	Δ SN386			
	111111111111111111111111111111111111111	THP 200			
		SFR 100			
		THR 106			
1		11111170	1		1

Further analysis of compounds was done based on the docking score obtained. Among the 32 molecules designed, top ten docked molecules were selected for further research. These molecules' glide score, ADMET properties, binding energy and PASS activity were performed. The glide score of compromise of Vander Waal energy (evdw), Coulomb energy (ecoul) and glide energy is shown in table 2. Various amino acids and different bonds through which receptors and the top ten docked molecules interacted are shown in table 3.

Binding free energy calculation: Similarly, to determine the binding free energy of the top docked molecules with the target protein 7E2X, the prime MM-GBSA simulations were run. It showed that compounds binding energy ranged from-77.81 kcal/mol to -75.48 kcal/mol and standard drug imipramine had -47.20 kcal/mol. It was observed that compounds C29, C15 and C30, with the highest docking score, have the highest binding free energy. The MM/GBSA findings of the top ten docked compounds are reported in Table 4.

ADME profile: The compound's pharmacokinetics and drug-like characteristics were evaluated using the QikProp module of the Schrödinger suite 2020-4. Table 5 lists the findings of the top ten docked molecules. Based on the results, it was observed that it successfully satisfied all the parameters to be a druggable molecule. All the compounds had a molecular weight lesser than 500 Daltons and other features well within the prescribed limit to obey Lipinski's rule of five and rule of three.

Pharmacophore modelling: Further pharmacophore modeling using *e*-pharmacophore generation from the phase module was generated. It determines the compounds' steric and electronic features to show supra-interaction with receptors 7E2X. The highest dock score compound and receptor complex were selected to lead aromatic rings R8, R10 and R11. Hydrogen bond acceptor A5 and hydrophobic H6 of the compound had excellent interaction with the receptor. The distance between the rings R10 to R11 is 10.84 Å, R11 to R8 is 6.29 Å and R8 to R10 is 6.28 Å respectively. The generated Pharmacophore modeling are shown in figures 5 and 6.

Table 4
Rinding free energy simulations using Prime/MM-CRSA approach of top ten docked compounds

binding free energy simulations using i rinter white obset approach of top ten docked compounds									
Comp	$\Delta \mathbf{G}$ bind	$\Delta \mathbf{G}$ bind lipo	$\Delta \mathbf{G}$ bind	$\Delta \mathbf{G}$ bind	$\Delta \mathbf{G}$ bind	$\Delta \mathbf{G}$ bind vdW			
Code			coulomb	covalent	Solve GB				
C1	-68.80	-34.03	5.90	5.13	2.52	-46.87			
C5	-66.44	-33.73	-0.09	2.97	6.18	-40.38			
C11	-66.74	-34.09	-1.12	3.40	8.98	-42.46			
C12	-69.02	-35.16	-9.89	1.47	15.59	-40.50			
C13	-68.96	-35.05	-0.16	2.66	7.62	-42.72			
C15	-77.79	-42.75	1.61	2.57	6.54	-44.32			
C21	-73.00	-37.61	1.19	2.72	6.89	-44.84			
C23	-75.63	-43.17	3.62	3.55	6.20	-44.45			
C29	-77.81	-41.08	0.29	0.89	10.93	-47.50			
C31	-71.02	-36.89	0.84	2.04	6.27	-41.91			
Imipramine	-47.20	-40.19	1.08	1.10	18.93	-27.40			

 Table 5

 Predicted ADME profile of top ten docked compounds

Compound	MoLMW	dinala	SASA	FOSA	FIGA	OPlogDw	Dulo of	Dulo of
Compound		aipoie	SASA	гоза	FISA	Qriogrw	Kule of	Kule of
Code							five	three
C1	361.313	2.921	627.064	24.589	186.849	2.590	0	0
C5	334.306	6.873	597.699	24.560	89.678	3.584	0	0
C11	332.315	7.098	597.456	20.302	135.021	2.876	0	0
C12	346.342	6.763	629.591	108.457	135.081	3.179	0	0
C13	346.342	8.309	625.704	117.314	89.774	3.402	0	0
C15	350.760	5.093	612.685	24.562	89.685	3.849	0	0
C21	346.342	7.405	625.607	116.777	89.733	3.402	0	0
C23	385.206	8.470	632.218	17.555	89.776	4.297	0	0
C29	406.394	7.291	700.606	290.284	89.688	3.597	0	0
C31	350.760	8.892	608.131	17.584	89.792	3.791	0	0
Imipramine	280.412	1.471	578.771	281.577	6.800	4.420	0	0

i reurere anticepi essant i A (i narmacologically active) value of top ten docked molecules						
Compound	Pass value					
C1	0.734					
C5	0.779					
C11	0.647					
C12	0.666					
C13	0.793					
C15	0.827					
C21	0.833					
C23	0.664					
C29	0.721					
C31	0.611					
Imipramine	0.912					

 Table 6

 Predicted antidepressant PA (Pharmacologically active) value of top ten docked molecules

Figure 6: Alignment of compound C15 with the best common pharmacophore hypotheses

Figure 7: Pharmacophore hypothesis and angles between pharmacophoric sites

PASS predicted value: The compound's biological activity showed a superior value close to the standard drug imipramine 0.912. The predicted compounds' antidepressant activity ranged from 0.611 to 0.833. Among all these compounds, C15 and C21 showed the highest antidepressant activity with pa of 0.827 and 0.833 respectively. Pa value of predicted compounds is shown in table 6.

Conclusion

In this study, to evaluate the anti-depressant of oxadiazolelinked chromone, thirty-two different substituted compounds were designed and *in silco* studies were performed. The designed compounds' molecular docking was conducted with Apo serotonin 1A (5-HT1A) receptor (7E2X) and most of these compounds exhibited higher docking scores compared to the standard drug imipramine. Compound C15 ((E)-3-(5-(3-chlorostyryl)-1, 3, 4oxadiazol-2-yl)-4H-chromen-4-one) showed the highest docking score of -7.617 kcal/mol. To evaluate its other properties, the top ten docked molecules were selected. ADMET studies of these compounds showed physiochemical properties well within the limit and possessed druggable properties.

The MM-GBSA of the compounds showed an excellent binding affinity with receptors, with the highest compound being C29 (77.81 kcal/mol.) The pharmacophore mapping showed electronic and aromatic features of the ligand such as potential hydrogen bond acceptor A5, hydrophobic H6 and aromatic rings R8, R10 and R11, to show excellent interaction with receptor 7E2X. The PA value from PASS predicted that these designed compounds have a greater chance of belonging to an antidepressant class of drugs with the highest of compounds C15 and C21.

Thus, this study showed that oxadiazole-linked chromone is a potential candidate for antidepressant activity with the highest potential of compounds C15, C29 and C23. Further, these compounds should be synthesized and pharmacologically investigated to become promising leads for the treatment of depression.

Acknowledgement

The authors gratefully acknowledged the NGSM Institute of Pharmacy and NITTE (Deemed to be University) which provided the facilities needed to conduct this research.

References

1. Dighe N.S., Tambe D.L., Dighe A.S., Musmade D.S. and Nirmal S.A., Design, Synthesis and Anti-Depressant Activity of Some Novel Coumarin Derivatives, *J. Anal. Pharm. Res.*, **2**(**4**), 00026 (**2016**)

2. Glomb T., Wiatrak B., Gębczak K., Gębarowski T., Bodetko D., Czyżnikowska Ż. and Świątek P., New 1, 3, 4-Oxadiazole Derivatives of Pyridothiazine-1, 1-Dioxide with Anti-Inflammatory Activity, *Int. J. Mol. Sci.*, **21(23)**, 9122 (**2020**)

3. Gomes A., Neuwirth O., Freitas M., Couto D., Ribeiro D., Figueiredo A.G., Silva A.M., Seixas R.S., Pinto D.C., Tomé A.C. and Cavaleiro J.A., Synthesis and antioxidant properties of new chromone derivatives, *Bioorg. Med. Chem.*, **17**(**20**), 7218-7226 (**2009**)

4. Ibrahim F.M., Holik H.A. and Achmad A., *In silico* studies of amentoflavone and its derivatives against sars-cov-2, *Rasayan J. Chem.*, **14(3)**, 1469-1481 (**2021**)

5. Khalilullah H., Ahsan M., Hedaitullah M., Khan S. and Ahmed B., 1, 3, 4-oxadiazole: a biologically active scaffold, *Mini Rev Med Chem.*, **12(8)**, 789-801 (**2012**)

6. Khumar A.S., Kumar K.N., Raja C. and Ezhilarasi M.R., *In vitro* anticancer activity, antimicrobial and in-silico studies of naphthyl pyrazole analogs, *Rasayan J. Chem.*, **13**, 1199-1214 (**2020**)

7. Kim M.K., Yoon H., Barnard D.L. and Chong Y., Design, synthesis and antiviral activity of 2-(3-amino-4-piperazinylphenyl) chromone derivatives, *Chem. Pharm. Bull.*, **61**(4), 486-488 (**2013**)

8. Kumar B., Mantha A.K. and Kumar V., Recent developments on the structure-activity relationship studies of MAO inhibitors and their role in different neurological disorders, *RSC Adv.*, **6**(48), 42660-42683 (**2016**)

9. Mouysset G., Payard M., Couquelet J., Bastide P., Stenger A., Delhon A. and Tisne-Versailles J., Synthesis and pharmacological study of new N-methyl 1, 2, 3-triazole derivatives of 2-cyano chromones, *Farmaco*, **45**(**7-8**), 847-857 (**1990**)

10. Nemeroff C.B., The burden of severe depression: a review of diagnostic challenges and treatment alternatives, *J Psychiatr Res.*, **41(3-4)**, 189-206 (**2007**)

11. Şahin G., Palaska E., Ekizoğlu M. and Özalp M., Synthesis and antimicrobial activity of some 1, 3, 4-oxadiazole derivatives, *Il Farmaco*, **57**(**7**), 539-542 (**2002**)

12. Tantray M.A., Khan I., Hamid H., Alam M.S., Dhulap A. and Kalam A., Synthesis of benzimidazole-based 1, 3, 4-oxadiazole-1, 2, 3-triazole conjugates as glycogen synthase kinase- 3β inhibitors with antidepressant activity in in vivo models, *RSC Adv.*, **6**(49), 43345-43355 (**2016**)

13. Thomsen R. and Christensen M.H., MolDock: a new technique for high-accuracy molecular docking, *J. Med. Chem.*, **49(11)**, 3315-3321 (**2006**)

14. Wang S., Qi L., Liu H., Lei K., Wang X. and Liu R., Synthesis of 1, 3, 4-oxadiazoles derivatives with antidepressant activity and their binding to the 5-HT 1A receptor, *RSC Adv.*, **10**(**51**), 30848-30857 (**2020**)

15. Wang X., Zhou H., Wang X., Lei K. and Wang S., Design, synthesis and in vivo and in silico evaluation of coumarin derivatives with potential antidepressant effects, *Molecules*, **26(18)**, 5556 (**2021**)

16. Zakharov A.V., Lagunin A.A., Filimonov D.A. and Poroikov V.V., Quantitative prediction of anti-target interaction profiles for chemical compounds, *Chem. Res. Toxicol.*, **25**(11), 2378-2385 (2012).

(Received 10th March 2023, accepted 18th May 2023)